Trypanosoma bruceiN-myristoyltransferase
(TbNMT) is an attractive therapeutic
target for the treatment of human African trypanosomiasis (HAT). From
previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although
this compound represents an excellent lead, poor central nervous system
(CNS) exposure restricts its use to the hemolymphatic form (stage
1) of the disease. With a clear clinical need for new drug treatments
for HAT that address both the hemolymphatic and CNS stages of the
disease, a chemistry campaign was initiated to address the shortfalls
of this series. This paper describes modifications to the pyrazole
sulfonamides which markedly improved blood–brain barrier permeability,
achieved by reducing polar surface area and capping the sulfonamide.
Moreover, replacing the core aromatic with a flexible linker significantly
improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS)
mouse model of HAT.