African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT.
Gastrin is transiently expressed in fetal islets during a critical period of their development from protodifferentiated islet precursors in fetal pancreatic ducts. To examine the possible role of gastrin as an islet cell growth factor, postnatal islet growth was studied in transgenic mice which overexpress gastrin and TGFa in their pancreas. Overexpression of a TGFa transgene causes metaplastic ductules containing numerous insulin expressing cells that resemble protodifferentiated precursors of the fetal pancreas. However, islet mass of the TGFa transgenic mice was not increased. Pancreatic overexpression of gastrin from a chimeric insulin/gastrin transgene transcribed from the insulin promoter markedly decreased the TGFa-stimulated increase in pancreatic duct mass. Furthermore, pancreatic coexpression of both gastrin and TGFa significantly increased islet mass in mice expressing both transgenes. These findings indicate that TGFa and gastrin can act synergistically to stimulate islet growth, although neither peptide alone is sufficient. Islet growth may possibly be stimulated through gastrin promoting the differentiation of insulin-positive cells in the TGFa-induced metaplastic ducts. This transgenic study suggests that islet neogenesis can be reactivated in the ductular epithelium of the adult pancreas by local expression of two growth factors, gastrin and TGFa. (J. Clin. Invest. 1993. 92:1349-1356
The transcription factor NF-B activates a number of genes whose protein products are proinf lammatory. In quiescent cells, NF-B exists in a latent form and is activated via a signal-dependent proteolytic mechanism in which the inhibitory protein IB is degraded by the ubiquitinproteasome pathway.
Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi. Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the β5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the β4 and β5 proteasome subunits. This induced pocket exploits β4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.