African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT.
N-Myristoyltransferase (NMT) represents
a promising
drug target for human African trypanosomiasis (HAT), which is caused
by the parasitic protozoa Trypanosoma brucei. We
report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which
has potent activity against the enzyme (IC50 = 2 nM) and T. brucei (EC50 = 2 nM) in culture. The compound
has good oral pharmacokinetics and cures rodent models of peripheral
HAT infection. This compound provides an excellent tool for validation
of T. brucei NMT as a drug target for HAT as well
as a valuable lead for further optimization.
Trypanosoma bruceiN-myristoyltransferase
(TbNMT) is an attractive therapeutic
target for the treatment of human African trypanosomiasis (HAT). From
previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although
this compound represents an excellent lead, poor central nervous system
(CNS) exposure restricts its use to the hemolymphatic form (stage
1) of the disease. With a clear clinical need for new drug treatments
for HAT that address both the hemolymphatic and CNS stages of the
disease, a chemistry campaign was initiated to address the shortfalls
of this series. This paper describes modifications to the pyrazole
sulfonamides which markedly improved blood–brain barrier permeability,
achieved by reducing polar surface area and capping the sulfonamide.
Moreover, replacing the core aromatic with a flexible linker significantly
improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS)
mouse model of HAT.
Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.