Abstract-In this paper we propose a reconfigurable lightweight Internet Protocol Security (IPSec) hardware core. Our architecture supports the main IPSec protocols; namely Authentication Header (AH), Encapsulating Security Payload (ESP), and Internet Key Exchange (IKE). In this work, the cryptographic algorithms and their modes of operation, which are at the heart of the IPSec protocols, are implemented in hardware. Instead of re-implementing common IPSec configurations, which are deemed "too heavy" for pervasive devices, we evaluate efficient implementations of standardized and/or well-known lightweight and hardware-friendly algorithms. In particular, we examine different versions of PRESENT, GRØSTL, PHOTON, and a very compact ECC core. As a consequence, we present IPSECCO, a core with adequate security and only moderate resource requirements, making it suitable for lightweight devices. We selected the Xilinx Spartan family of Field Programmable Gate Arrays (FPGA) as target platform due its low-power footprint and reduced costs compared to other FPGAs. Our results show that it is possible to realize a high performance IPSec core even on members of the Spartan-3 family.