Side-channel based collision attacks are a mostly disregarded alternative to DPA for analyzing unprotected implementations. The advent of strong countermeasures, such as masking, has made further research in collision attacks seemingly in vain. In this work, we show that the principles of collision attacks can be adapted to efficiently break some masked hardware implementation of the AES which still have first-order leakage. The proposed attack breaks an AES implementation based on the corrected version of the masked S-box of Canright and Batina presented at ACNS 2008. The attack requires only six times the number of traces necessary for breaking a comparable unprotected implementation. At the same time, the presented attack has minimal requirements on the abilities and knowledge of an adversary. The attack requires no detailed knowledge about the design, nor does it require a profiling phase.
Abstract. At CHES 2010 two powerful new attacks were presented, namely the Fault Sensitivity Analysis and the Correlation Collision Attack. This paper shows how these ideas can be combined to create even stronger attacks. Two solutions are presented; both extract leakage information by the fault sensitivity analysis method while each one applies a slightly different collision attack to deduce the secret information without the need of any hypothetical leakage model. Having a similar fault injection method, one attack utilizes the non-uniform distribution of faulty ciphertext bytes while the other one exploits the data-dependent timing characteristics of the target combination circuit. The results when attacking several AES ASIC cores of the SASEBO LSI chips in different process technologies are presented. Successfully breaking the cores protected against DPA attacks using either gate-level countermeasures or logic styles indicates the strength of the attacks.
Several masking schemes to protect cryptographic implementations against side-channel attacks have been proposed. A few considered the glitches, and provided security proofs in presence of such inherent phenomena happening in logic circuits. One which is based on multi-party computation protocols and utilizes Shamir's secret sharing scheme was presented at CHES 2011. It aims at providing security for hardware implementations -mainly of AES -against those sophisticated side-channel attacks that also take glitches into account. One part of this article deals with the practical issues and relevance of the aforementioned masking scheme. Following the recommendations given in the extended version of the mentioned article, we first provide a guideline on how to implement the scheme for the simplest settings. Constructing an exemplary design of the scheme, we provide practical side-channel evaluations based on a Virtex-5 FPGA. Our results demonstrate that the implemented scheme is indeed secure against univariate power analysis attacks given a basic measurement setup. In the second part of this paper we show how using very simple changes in the measurement setup opens the possibility to exploit multivariate leakages while still performing a univariate attack. Using these techniques the scheme under evaluation can be defeated using only a moderate number of measurements. This is applicable not only to the scheme showcased here, but also to most other known masking schemes where the shares of sensitive values are processed in adjacent clock cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.