2007
DOI: 10.1155/2007/87046
|View full text |Cite
|
Sign up to set email alerts
|

Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs

Abstract: Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs) to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
35
0

Year Published

2008
2008
2017
2017

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 29 publications
(35 citation statements)
references
References 19 publications
0
35
0
Order By: Relevance
“…To convert floating-point algorithms into fixed-point,it is necessary to first estimate the range of the required floating-point variables followed by choice of Q-format. Then the floating-point variables and floating-point arithmetic equations are converted to fixed-point format [22], [24]. The fixed-point algorithm is then tested for error and the algorithm is optimized for our purpose.…”
Section: Conclusion and Future Scopementioning
confidence: 99%
“…To convert floating-point algorithms into fixed-point,it is necessary to first estimate the range of the required floating-point variables followed by choice of Q-format. Then the floating-point variables and floating-point arithmetic equations are converted to fixed-point format [22], [24]. The fixed-point algorithm is then tested for error and the algorithm is optimized for our purpose.…”
Section: Conclusion and Future Scopementioning
confidence: 99%
“…For high-end vision applications requiring high clock rates fixed-point representation can still be an optimum choice. Hence, there is still considerable interest in making floating-point implementations of algorithms amenable to fixed-point arithmetic as shown in Nikolić et al [27], Kim et al [18] and Coors et al [5].…”
Section: Floating-point Vs Fixed-pointmentioning
confidence: 99%
“…In these cases, algorithmic alternatives need to be employed. Some semi-automatic tools for conversion are suggested by Nikolić et al [27], Kim et al [18] and Coors et al [5].…”
Section: Floating-point Vs Fixed-pointmentioning
confidence: 99%
“…Some published approaches for floating-point to fixedpoint conversion use an analytic approach for range and error estimation [10,15], while others use a statistical approach [2,8].…”
Section: A Dynamic Range Estimationmentioning
confidence: 99%
“…In cases when the overhead of the floating-point emulation is too great and performance improvements are needed, algorithms that require intensive real-time signal processing must be converted to a fixedpoint implementation. Therefore, there is considerable interest in making floating-point implementations of driver assist algorithms amenable to fixed-point implementation [2,3].…”
Section: Introductionmentioning
confidence: 99%