A new method for MRI needle tracking within a given two-dimensional (2D) image slice is presented. The method is based on k-space investigation of the difference image between the current dynamic frame and a reference frame. Using only a few central k-lines of the difference image and a nonlinear optimization procedure, one can resolve the parameters that define the 2D sinc function that best characterizes the needle in k-space. The spatial location and orientation of the needle are determined from these parameters. Rapid needle tracking is obtained by repeated acquisitions of the same set of several central k-lines (as in a "keyhole" protocol) and repeated computation of these parameters. The calculated needle tip is depicted on the reference image by means of a graphic overlay. The procedure was tested in computer simulations and in actual MRI scans (the computations were done offline). It was demonstrated that six k-lines out of 128 usually suffice to locate the needle. The refresh rate of the needle location depends on the time required to sample the subset of k-lines, calculate the current needle location, and refresh the reference image. Magn