In this article we deal with the optimal sizing of low-noise amplifiers (LNAs) using newly proposed metamodeling techniques. The main objective is to construct metamodels of main performances of the LNAs (namely, the third intercept point (IIP3), the scattering parameters (Sij), and the noise figure (NF)) and use them inside an optimization kernel for maximizing the circuits’ performances. The kriging surrogate modelling technique is used for constructing these models. The particle swarm optimization (PSO) technique is considered as the optimization metaheuristic. Two CMOS amplifiers are considered: a UMTS LNA and a multistandard LNA. Obtained results show that, at the considered working frequencies, the first LNA exhibits at 2.14 GHz a noise figure of 1.30 dB, an S21 of 16.01 dB, an S11 of −12.60 dB, and an IIP3 of 8.30 dBm. At 2 GHz, the second LNA has a noise figure of 1.24 dB, an S21 of 17.16 dB, an S11 of −13.74 dB, and an IIP3 of 4.30 dBm. Comparisons between results obtained using the constructed models and those of the simulation are presented to show the perfect agreement between them.