This work reviews the theoretical cycles studied by other authors on the operation of a steam engine as an expansion machine and chooses a generalized cycle for the study. This generalized cycle is modeled and the points of optimization are determined. By studying the theoretical cycles, it was found that the steam engine can reach the isentropic efficiency equal to 100%. An experimental study carried out in a steam engine in order to verify the phenomena occurring that influence their effectiveness, moving the actual operation away from the theoretical cycle. By making the experimental study, it was found that the actual steam engine has a low efficiency, reaching a maximum 10% isentropic efficiency. This efficiency is not of the cycle, but of the whole set, and is due to several factors, such as friction problems, lubrication problems, physical imperfections causing leakage of the working fluid. A computer simulation was performed in order to predict the actual behavior of the steam engine and compare with the experimental data. After analyzing the simulated data, it was found that the valves have a great influence on the isentropic efficiency of the steam cycle. Valves operating instantly can reach 96 % of isentropic efficiency, while real valves cause an efficiency of approximately 60% for the same simulation conditions. A major difference between the simulation and the actual data is the flow restriction caused by valves, which requires specific discharge coefficients for this type of valve.