Shape memory alloys (SMAs) are active materials able to recover large strains over several thermo-mechanical cycles. In the actuation field, this strain recovery is principally exploited on the mini and micro scales at which SMAs exhibit their highest power density with respect to common lightweight technologies. During the repetitive actuation of a SMA element, certain events occur: strain drift at the beginning of cyclic testing, the accumulation of plastic deformation, and strain stabilisation. In this study, these events as well as the overall mechanical response of an articulated NiTi element were monitored through calorimetry and scanning electron microscopy. Fatigue and cyclic stability were tested under different loads and under different aging conditions. In addition, the surface morphology was continuously observed via scanning electron microscopy to monitor crack growth and propagation during the fatigue test. Finally, before and after the fatigue test, samples were tested through calorimetry to investigate the overall microstructural homogeneity. Results confirm the high potential of the proposed geometry for the development of NiTi non-conventional active elements in the miniature actuation field.