A traditional aircraft is optimized for only one or two flight conditions, not for the entire flight envelope. In contrast, the wings of a bird can be reshaped to provide optimal performance at all flight conditions. Any change in an aircraft’s configuration, in particular the wings, affects the aerodynamic performance, and optimal configurations can be obtained for each flight condition. Morphing technologies offer aerodynamic benefits for an aircraft over a wide range of flight conditions. The advantages of a morphing aircraft are based on an assumption that the additional weight of the morphing components is acceptable. Traditional mechanical and hydraulic systems are not considered good choices for morphing aircraft. “Smart” materials and structures have the advantages of high energy density, ease of control, variable stiffness, and the ability to tolerate large amounts of strain. These characteristics offer researchers and designers new possibilities for designing morphing aircraft. In this article, recent developments in the application of smart materials and structures to morphing aircraft are reviewed. Specifically, four categories of applications are discussed: actuators, sensors, controllers, and structures.