devices, [26,27] to small-scale nano- [28][29][30] and DNA origamis. [31] A common theme in these studies is to exploit the sophisticated shape transformations from folding. For example, an origami robot is typically fabricated in a 2D flat configuration and then folded into the prescribed 3D shape to perform its tasks. The origamis have been treated essentially as linkage mechanisms in which rigid facets rotate around hingelike creases (aka "rigid-folding origami"). Elastic deformation of the constituent sheet materials or the dynamics of folding are often neglected. Such a limitation in scope indeed resonates the origin of this field, that is, folding was initially considered as a topic in geometry and kinematics.However, the increasingly diverse applications of origami require us to understand the force-deformation relationship and other mechanical properties of folded structures. Over the last decade, studies in this field started to expand beyond design and kinematics and into the domain of mechanics and dynamics. Catalyzed by this development, a family of architected origami materials quickly emerged (Figure 1). These materials are essentially assemblies of origami sheets or modules with carefully designed crease patterns. The kinematics of folding still plays an important role in creating certain properties of these origami materials. For example, rigid folding of the classical Miura-ori sheet induces an in-plane deformation pattern with auxetic properties (aka negative Poisson's ratios). [32,33] However, elastic energy in the deformed facets and creases, combined with their intricate spatial distributions, impart the origami materials with a rich list of desirable and even unorthodox properties that were never examined in origami before. For example, the Ron-Resch fold creates a unique tri-fold structure where pairs of triangular facets are oriented vertically to the overall origami sheet and pressed against each other. Such an arrangement can effectively resist buckling and create very high compressive load bearing capacity. [34] Other achieved properties include shape-reconfiguration, tunable nonlinear stiffness and dynamic characteristics, multistability, and impact absorption.Since the architected origami materials obtain their unique properties from the 3D geometries of the constituent sheets or modules, they can be considered a subset of architected cellular solids or mechanical metamaterials. [35][36][37][38][39] However, the origami materials have many unique characteristics. The rich geometries of origami offer us great freedom to tailor targeted Origami, the ancient Japanese art of paper folding, is not only an inspiring technique to create sophisticated shapes, but also a surprisingly powerful method to induce nonlinear mechanical properties. Over the last decade, advances in crease design, mechanics modeling, and scalable fabrication have fostered the rapid emergence of architected origami materials. These materials typically consist of folded origami sheets or modules with intricate 3D geomet...