Can Organic Solvent Nanofiltration (OSN) be considered green? Is OSN greener than other downstream processing technologies? These are the two main questions addressed critically in the present review. Further questions dealt with in the review are as follows: What is the carbon footprint associated with the fabrication and disposal of membrane modules? How much solvent has to be processed by OSN before the environmental burden of OSN is less than the environmental burden of alternative technologies? What are the main challenges for improving the sustainability of OSN? How can the concept of Quality by Design (QbD) improve and assist the progress of the OSN field? Does the scale have an effect on the sustainability of membrane processes? The green aspects of OSN membrane fabrication, processes development and scale-up as well as the supporting concept of QbD, and solvent recovery technologies are critically assessed and future research directions are given, in this review. Gyorgy Szekely Gyorgy received his MSc degree in Chemical Engineering from the Technical University of Budapest, and he earned his PhD degree in Chemistry under Marie Curie Actions from the Technical University of Dortmund. He worked as an Early Stage Researcher in Hovione PharmaScience and an IAESTE Fellow at the University of Tokyo. He is currently a Research Associate in Imperial College London. His multidisciplinary professional background covers supramolecular chemistry, organic and analytical chemistry, molecular recognition, molecular imprinting, process development, nanofiltration and pharmaceutical impurity scavenging. He is the Secretary General of the Marie Curie Fellows Association and a Member of the Royal Society of Chemistry.