As the front end of the intake system, the intake dirty pipe is responsible for delivering sufficient and stable air to the air filter. Therefore, in order to meet the requirements of low intake resistance, it is necessary to correspondingly improve the flow resistance performance of the intake dirty pipe. In this study, the main research object was the intake pipe in the intake system of gasoline engine vehicles, and the internal gas flow field was simulated and analyzed. The results show that there are clear discrete velocity regions at the inlet and elbow, which affect the uniformity of the overall fluid flow and cause a certain pressure loss. After structural optimization, the total pressure difference at the inlet and outlet of the pipeline was reduced by 22.67% compared to the original model, and the total pressure loss was significantly reduced. A simplified model was used to make samples of the intake dirty pipes before and after performance improvement, and flow resistance tests were conducted respectively. The difference between test data and simulation data is within a reasonable range, and the simulation results are relatively reliable.