Lipid membranes compartmentalize eukaryotic cells and separate the cell interior from the extracellular milieu. So far, studies of peptide and protein interactions with membranes have largely been limited to naturally occurring peptides or to sequences designed on the basis of structural information and biophysical parameters. To expand on these studies, utilizing a system with minimal assumptions, we used phage-display technology to identify 12 amino-acid-long peptides that bind to liposomes at pH 5.0 but not at pH 7.5. Of the nineteen peptides discovered three were able to cause leakage of liposome contents. Multivalent presentation of these membrane-active peptides by conjugation onto poly(L-Lysine) enhanced their lytic potential. Secondary structures were analyzed by circular dichroism in aqueous 2,2,2-trifluoroethanol and in buffered aqueous solutions, in both the presence and absence of liposomes. Two of the three lytic peptides show alpha helical profiles whereas none of the non-lytic peptides formed stable secondary structures.The diverse characteristics of the peptides identified in this study demonstrate that phage-displayed peptide library screens on lipid membranes result in the discovery of non-classical membrane-active peptides, whose study will provide novel insights into peptide-membrane interactions.Membranes play an integral role in biology by acting as compartmentalizing barriers and are involved in many biological processes such as signaling (1), membrane trafficking (2) including endo-and exocytosis (3), and viral cell entry and propagation (4).Much of our understanding of protein-membrane interactions has been gained from studying the interaction of viral fusion proteins with membranes (5). The study of the interaction of fusion peptides of enveloped viruses with membranes proved to be particularly fruitful (6). The knowledge gained by these studies has greatly increased our understanding of not only the role of these fusion peptides in membrane fusion but yielded important insights into the interaction of peptides with membranes in general. Furthermore, these studies allowed for the harnessing peptides for improved delivery of genetic material and membrane impermeable drugs into the cell cytoplasm (7).Despite the large number of membrane-active peptides known, no apparent consensus sequence or motif exists that governs membrane activity (8). Mechanistically, membrane disturbance can range from surface or interfacial effects such as the "carpet" model (9,10) membrane insertion (11), membrane fusion, pore formation, or membrane rupture.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript of these mechanisms the structure and length requirements may be different. Until now, regions of both cellular and viral proteins as well as peptides that interact with membranes have been discovered predominantly by deletion and substitution studies (12), by homology (13), by photolabeling studies (14) and by biophysical analyses (15-17).A more encompassing approach is an exp...