The fusogenic properties of an amphipathic net-negative peptide (wae 11), consisting of 11 amino acid residues, were studied. We demonstrate that, whereas the free peptide displays no significant fusion activity, membrane fusion is strongly promoted when the peptide is anchored to a liposomal membrane. The fusion activity of the peptide appears to be independent of pH, and membrane merging is an essentially nonleaky process. Thus, the extents of lipid mixing and contents mixing were virtually indistinguishable. Vesicle aggregation is a prerequisite for fusion. For this process to take place, the target membranes required a positive charge which was provided by incorporating lysine-coupled phosphatidylethanolamine (PElys). The coupled peptide, present in one population, could thus cause vesicle aggregation via nonspecific electrostatic interaction with PElys. However, the free peptide failed to induce aggregation of PElys vesicles, suggesting that the spatial orientation of the coupled peptide codetermined its ability to bring about vesicle aggregation and fusion. With the monitoring of changes in the intrinsic Trp fluorescence, in conjunction with KI-quenching studies, it would appear that hydrophobic interactions facilitate the fusion event, possibly involving (partial) peptide penetration. Such a penetration may be needed to trigger formation of a transient, nonbilayer structure. Since lysophosphatidylcholine inhibited while monoolein strongly stimulated peptide-induced fusion, our data indicate that wae 11-induced fusion proceeds according to a model consistent with the stalk-pore hypothesis for membrane fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.