2012
DOI: 10.1007/978-3-662-64283-2_21
|View full text |Cite
|
Sign up to set email alerts
|

Design of Interpretable Machine Learning Tasks for the Application to Industrial Order Picking

Abstract: State-of-the-art methods in image-based robotic grasping use deep convolutional neural networks to determine the robot parameters that maximize the probability of a stable grasp given an image of an object. Despite the high accuracy of these models they are not applied in industrial order picking tasks to date. One of the reasons is the fact that the generation of the training data for these models is expensive. Even though this could be solved by using a physics simulation for training data generation, anothe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 20 publications
0
0
0
Order By: Relevance