Robotic grasping in dynamic environments is still one of the main challenges in automation tasks. Advances in deep learning methods and computational power suggest that the problem of robotic grasping can be solved by using a huge amount of training data and deep networks. Despite these huge accomplishments, the acceptance and usage in real-world scenarios is still limited. This is mainly due to the fact that the collection of the training data is expensive, and that the trained network is a black box. While the collection of the training data can sometimes be facilitated by carrying it out in simulation, the trained networks, however, remain a black box. In this study, a three-step model is presented that profits both from the advantages of using a simulation approach and deep neural networks to identify and evaluate grasp points. In addition, it even offers an explanation for failed grasp attempts. The first step is to find all grasp points where the gripper can be lowered onto the table without colliding with the object. The second step is to determine, for the grasp points and gripper parameters from the first step, how the object moves while the gripper is closed. Finally, in the third step, for all grasp points from the second step, it is predicted whether the object slips out of the gripper during lifting. By this simplification, it is possible to understand for each grasp point why it is stable and – just as important – why others are unstable or not feasible. All of the models employed in each of the three steps and the resulting Overall Model are evaluated. The predicted grasp points from the Overall Model are compared to the grasp points determined analytically by a force-closure algorithm, to validate the stability of the predicted grasps.
Humans learn movements naturally, but it takes a lot of time and training to achieve expert performance in motor skills. In this review, we show how modern technologies can support people in learning new motor skills. First, we introduce important concepts in motor control, motor learning and motor skill learning. We also give an overview about the rapid expansion of machine learning algorithms and sensor technologies for human motion analysis. The integration between motor learning principles, machine learning algorithms and recent sensor technologies has the potential to develop AI-guided assistance systems for motor skill training. We give our perspective on this integration of different fields to transition from motor learning research in laboratory settings to real world environments and real world motor tasks and propose a stepwise approach to facilitate this transition.
State-of-the-art methods in image-based robotic grasping use deep convolutional neural networks to determine the robot parameters that maximize the probability of a stable grasp given an image of an object. Despite the high accuracy of these models they are not applied in industrial order picking tasks to date. One of the reasons is the fact that the generation of the training data for these models is expensive. Even though this could be solved by using a physics simulation for training data generation, another even more important reason is that the features that lead to the prediction made by the model are not human-readable. This lack of interpretability is the crucial factor why deep networks are not found in critical industrial applications. In this study we suggest to reformulate the task of robotic grasping as three tasks that are easy to assess from human experience. For each of the three steps we discuss the accuracy and interpretability. We outline how the proposed three-step model can be extended to depth images. Furthermore we discuss how interpretable machine learning models can be chosen for the three steps in order to be applied in a real-world industrial environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.