Gold nanostars; self-assembled monolayers; near infrared; NIR-II; metal enhanced fluorescence; localized surface plasmon resonance; fluorescence lifetime.Gold nanostars (AuNS) are receiving increasing attention for their potential applications in bionanotechnology, because of their unique optical properties related to their complex branched morphology. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 2 confirming that AuNS substrates are promising NIR-MEF platforms for the development of ultrasensitive biosensing applications. Using fluorescence lifetime measurements to semi-quantitatively deconvolute the excitation enhancement from emission enhancement, as well as modelling to simulate the electric field enhancement, we show that a combination of enhanced excitation and an increased radiative decay rate, accompanied by an increase to the quantum yield, contribute to the observed large enhancement. AuNS with different morphological features exhibit significantly different excitation enhancement, indicating the important role of particle morphology on the magnitude of electromagnetic field enhancement, and the resulting enhancement factor. Importantly, enhancement factors of up to 50 times are also achieved in the NIR-II region, suggesting that this system holds promise for the future development of bright probes for NIR/NIR-II biosensing and bioimaging.