Aggregate, the main ingredient of concrete, has a great effect on mechanical property and durability of concrete. Sulfoaluminate cement has lots of special properties such as high early-age compressive strength, fast hydration and setting rate, and hydration with slight swelling. But effect of aggregate gradation with Fuller distribution on properties of sulfoaluminate cement concrete was seldom studied. Hence, in this paper, experimental investigations on mechanical property and durability of sulfoaluminate cement concrete with aggregate gradations according to Fuller distribution were presented. Fuller distribution of aggregates was beneficial to the close packing of aggregates, and the packing density was changed by adjusting the aggregate gradations. Compressive strength, water impermeability, and resistance capability to sulfate attack of SACC have the same trend of concrete with fine aggregates of Fuller distribution gradation < concrete with fine aggregates of Fuller distribution gradation < concrete with fine aggregates of Fuller distribution gradation. The relationship between packing density of aggregate and water penetration depth obeyed the second-order polynomial y = 0.002x 2 -6.8638x + 5862.3 and had a notable correlation R 2 = 0.9799. The sulfoaluminate cement concrete with total aggregate gradation with Fuller distribution for h = 0.50 had the best resistance capability to sulfate attack. It was a second-order polynomial relationship between packing density of aggregates and water penetration depth of y = 0.002x 2 -6.8638x + 5862.3 with R 2 = 0.9799, which indicated notable correlation. The fitting formula between packing density of aggregates and sulfate resistance coefficient of SACC was y = 0.0.0005x + 0.3704 with R 2 = 0.9585.