Three configurations of compact planar multistub antennas are proposed in the frequency range of 27–29.5 GHz as candidates for the 5G standard frequency band. Each antenna consists of the same feeding part configuration but different structures for the dipole, director, and reflector parts. The feeding part is based on the substrate integrated waveguide (SIW) technology which results in compact size. The TE10 dominant mode is considered in the design procedure by HFSS software simulations. The proposed antennas have been simulated, fabricated, and measured (for S11, E, and H pattern). The simulation and measurement results show reasonable agreement for S11 and radiation patterns of E- and H-planes and impedance bandwidths. Moreover, for specific absorption rate (SAR) estimation, a three-layer human head model (skin, skull, and brain) is placed next to the antennas as the exposure source. The simulation results show the performance of the proposed antennas for low-SAR, which make them good candidates for safe usage concerning the negative impact of millimeter waves (mmWs) on human health. Finally, a comparison table is presented which verifies the compact size of our proposed antennas.