Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A star tracker should be well calibrated before it is equipped in order to achieve high accuracy. There exists, however, the coupling problem between the internal and external parameters for most commonly used laboratory calibration methods, which affect the star tracker’s performance. We theoretically analyze the major aspects of the coupling mechanism based on the star tracker laboratory calibration model, which means the coupling between the principal point and the installation angle. The concept of equivalent principal point error, which illustrates the effectiveness of the calibration even with poor decoupling accuracy between the principal point and the installation angle, is introduced. Simulation and bench experiments are conducted to verify the laboratory calibration method and its coupling mechanism. The decoupling accuracy can be improved with more samples during calibration. In addition, the equivalent principal point error converges quickly and hardly affects the attitude of the star tracker, which is verified by both theory and experiment. The comprehensive calibration accuracy can still reach a high level even with poor decoupling accuracy.
A star tracker should be well calibrated before it is equipped in order to achieve high accuracy. There exists, however, the coupling problem between the internal and external parameters for most commonly used laboratory calibration methods, which affect the star tracker’s performance. We theoretically analyze the major aspects of the coupling mechanism based on the star tracker laboratory calibration model, which means the coupling between the principal point and the installation angle. The concept of equivalent principal point error, which illustrates the effectiveness of the calibration even with poor decoupling accuracy between the principal point and the installation angle, is introduced. Simulation and bench experiments are conducted to verify the laboratory calibration method and its coupling mechanism. The decoupling accuracy can be improved with more samples during calibration. In addition, the equivalent principal point error converges quickly and hardly affects the attitude of the star tracker, which is verified by both theory and experiment. The comprehensive calibration accuracy can still reach a high level even with poor decoupling accuracy.
This study proposes an ultraviolet-visible composite optical target simulation technique based on a liquid crystal display (LCD) spatial light modulation device to solve the problem of not being able to satisfy the demand for optical target simulation for both ultraviolet and visible light operating spectral ranges in a single system when composite simulation of multi-source spatial targets is performed. We establish a composite light source model of an ultraviolet light emitting diode (LED) and a xenon lamp to enhance the energy simulation of the ultraviolet portion, and the light is mixed and homogenized by an integrating sphere. We analyze the light transmission principle of LCD display devices and derive the equation for the relationship between its working band and transmittance. We design a transmission-type projection system with a wide spectral range and simulate the transmittance of the whole system, and demonstrate the optical target simulator can realize the simulation requirements of a wide working spectral range, high interstellar angular distance accuracy, and high magnitude accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.