2015
DOI: 10.1016/j.jfranklin.2014.10.015
|View full text |Cite
|
Sign up to set email alerts
|

Design of parameter-scheduled state-feedback controllers using shifting specifications

Abstract: In this paper, the problem of designing a parameter-scheduled state-feedback controller is investigated. The paper presents an extension of the classical regional pole placement, H 2 control and H ∞ control problems, so as to satisfy new specifications, that will be referred to as shifting pole placement control, shifting H 2 control and shifting H ∞ control, respectively. By introducing some parameters, or using the existing ones, the controller can be designed in such a way that different values of these par… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
6
1

Relationship

3
4

Authors

Journals

citations
Cited by 19 publications
(7 citation statements)
references
References 50 publications
0
5
0
2
Order By: Relevance
“…The term 2αP can be added to the inequalities (16) to ensure a guaranteed decay rate of the derivative of the Lyapunov function, which can be used to tune the closed-loop transient properties [24], thus obtaining (13).…”
Section: Design With Constant Input Saturationmentioning
confidence: 99%
See 2 more Smart Citations
“…The term 2αP can be added to the inequalities (16) to ensure a guaranteed decay rate of the derivative of the Lyapunov function, which can be used to tune the closed-loop transient properties [24], thus obtaining (13).…”
Section: Design With Constant Input Saturationmentioning
confidence: 99%
“…It makes sense that a change in the saturation function should be tied to a change in the performance achieved by the closed-loop control system (e.g., if the maximum possible input decreases, the system's response should become slower). For this reason, the time-varying saturation limits are addressed using shifting specifications, following some ideas found, for example, in References [13,14]. This means that some parameters are introduced which, on the one hand, they are scheduled by the time-varying saturations and, on the other hand, they schedule the performance criteria in such a way that different values of these parameters imply different performances (in this paper, we will consider the guaranteed decay rate but the developed results can be extended straightforwardly to other criteria, for example, pole clustering or H ∞ /H 2 guaranteed bounds).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Sin embargo, en el caso de sistemas con varios parámetros inciertos, una caracterización elipsoidal de la incertidumbre podría ser preferible para evitar problemas computacionales relacionados con el crecimiento exponencial del número total de vértices politópicos (Tanaka et al, 2000). En el segundo caso, detallado en (Rotondo et al, 2015a), el parámetro θ es utilizado para inducir variaciones en indicadores de prestación como la región LMI D o el desempeño H ∞ γ, obteniendo respectivamente D(θ) o γ(θ). Este paradigma, denominado mudable (del inglés shifting), es apropiado para todas las situaciones en las cuales una degradación de las prestaciones, en unas condiciones concretas de funcionamiento, sea deseable.…”
Section: Consideraciones Adicionalesunclassified
“…Teniendo en cuenta que las matrices de vértices A 1 y A 2 no son controlables a través de (b 1 , 0, 0) T debido a su diagonalidad de bloques (aunque sí son cuadráticamente estables), se intenta encontrar una ganancia de controlador K(θ(t)) que aumente la tasa de decaimiento exponencial de la función de Lyapunov para las matrices de vértices A 3 , A 4 , A 5 y A 6 . De esta forma, se obtendrá un sistema en lazo cerrado que se vuelva más rápido para valores crecientes de |ω h |, siguiendo así el mismo espíritu del paradigma mudable detallado en (Rotondo et al, 2015a) en el semiplano a la izquierda Re(s) < λ L (ver Sección 3.1) y la estabilidad cuadrática de las matrices A 1 , A 2 que, a través del cambio de variable Γ(θ) = K(θ)P, conduce al siguiente conjunto de LMIs:…”
Section: Aplicación Al Trmsunclassified