Random Forest (RF), rastgele oluşturulmuş birden çok karar ağacının çıktısını birleştiren, regresyon ve sınıflandırma problemlerini çözmek için kullanılan bir makine öğrenme algoritmasıdır. RF algoritması, karar ağaçlarının tahminlerinden yola çıkarak sonuca ulaşmayı sağlar. Ormandaki ağaç sayısının artması algoritma sonucunun kesinliğini arttırır. RF algoritması ormandaki karar ağaçları üzerinde rastgele ve sürekli olarak işlem gerçekleştirdiği için paralel mimaride platformlar üzerinde çalıştırılması ile olumlu sonuçlar elde edilebilir. Field Programmable Gate Array (FPGA) entegre devreler, paralel işlem yapabilme yeteneğine sahip olduğundan, RF algoritmasının donanım üzerinde gerçekleştirilen uygulamalarında kullanılması performansı arttırmaktadır. Gerçekleştirilen çalışmada RF algoritması sayısal bir veri seti ile hem MATLAB üzerinde hem de FPGA üzerinde çalıştırılarak sınıflandırma işlemleri gerçekleştirilmiştir. Algoritmadaki işlem modüllerinin ve tüm mantıksal tasarımların geliştirilmesi aşamalarında Very High Speed Integrated Circuit Hardware Description Language (VHDL) kullanılmıştır. VHDL ile oluşturulan tüm tasarımlar Xilinx ISE geliştirme ortamında gerçekleştirilmiştir. Bilgisayar işlemcisi üzerinde MATLAB kullanılarak çalıştırılan ve FPGA mimarisi üzerinde çalıştırılan RF algoritmasının performans, doğruluk ve bellek kullanım oranları açısından karşılaştırmaları yapılarak elde edilen sonuçlar incelenmiştir. Gerçekleştirilen çalışma sonucunda, RF gibi yoğun işlemler ve hesaplamalar yürüten uygulamalarda FPGA kullanımının performans ve bellek kullanımı yönünden bilgisayar işlemcilerine kıyasla yüksek oranda başarı sağladığı görülmüştür.