We propose and demonstrate a directed optical logic circuit that can perform the XOR and XNOR logic operations consisting of two cascaded microring resonators, i.e., an upper waveguide and an under waveguide. No waveguide crossings exist in the circuit, which is very useful to improve the signal quality and reduce the insertion loss of the device. As proof of principle, XOR and XNOR logic operations with the speed of 10 kb/s are successfully demonstrated. In addition, numerical simulation results indicate that the length difference between the upper waveguide and the under waveguide can change the output spectrum characteristics of the device, which acts like a MachZehnder interferometer (MZI).