We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH2)2PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH2)2PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH2)2PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.
We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 10(-7) bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.