Microalgae have vast potential as a sustainable and scalable source of biofuels and bioproducts. However, algae dewatering is a critical challenge that must be addressed. Ultrasonic settling has already been exploited for concentrating various biological cells at relatively small batch volumes and/or low throughput. Typically, these designs are operated in batch or semicontinuous mode, wherein the flow is interrupted and the cells are subsequently harvested. These batch techniques are not well suited for scaleup to the throughput levels required for harvesting microalgae from the large-scale cultivation operations necessary for a viable algal biofuel industry. This article introduces a novel device for the acoustic harvesting of microalgae. The design is based on the coupling of the acoustophoretic force, acoustic transparent materials, and inclined settling. A filtration efficiency of 70 ± 5% and a concentration factor of 11.6 ± 2.2 were achieved at a flow rate of 25 mL·min(-1) and an energy consumption of 3.6 ± 0.9 kWh·m(-3) . The effects of the applied power, flow rate, inlet cell concentration, and inclination were explored. It was found that the filtration efficiency of the device is proportional to the power applied. However, the filtration efficiency experienced a plateau at 100 W L(-1) of power density applied. The filtration efficiency also increased with increasing inlet cell concentration and was inversely proportional to the flow rate. It was also found that the optimum settling angle for maximum concentration factor occurred at an angle of 50 ± 5°. At these optimum conditions, the device had higher filtration efficiency in comparison to other similar devices reported in the previous literature.