This work investigated the effect of temperature and acid or alkalis chemical activation by pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) on the yield of bio-oil, hydrocarbon content of bio-oil, and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, KOH and HCl activation, in laboratory scale. The acidity of bio-oils and aqueous phases determined by AOCS methods, while the chemical composition of bio-oils and aqueous phase by GC-MS and FT-IR. The bio-char characterized by XRD. For the activation with KOH, the XRD analysis identified the presence of Kalicinite (KHCO3), the dominant crystalline phase in bio-char, while an amorphous phase was identified in bio-chars for the activation with HCl. The yield of bio-oil, for the pyrolysis of Açaí seeds activated with KOH, varied between 3.19 and 6.79 (wt.%), showing a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while the acidity of aqueous phase lies between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the pyrolysis experiments activated with HCl, the yield of bio-oil varied between 2.13 and 3.37 (wt.%), decreasing linearly with temperature, while that of gas phase varied between 17.91 and 37.94 (wt.%), increasing linearly with temperature. The acidity of bio-oil varied between 127.1 and 218.5 mgKOH/g, increasing with temperature, showing that higher temperatures did not favor the yield of bio-oil and bio-oils acidity. For the chemical activation with KOH, the FT-IR analysis of bio-oils identified the presence of chemical groups characteristics of hydrocarbons and oxygenates, while that of aqueous phase only groups characteristics of oxygenates. For the chemical activation with HCl, the FT-IR analysis of bio-oil and aqueous phases identified only the presence of groups characteristics of oxygenates. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with HCl activation, the GC-MS of bio-oil identified only the presence of oxygenates. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons while activation with HCl produced bio-oils with only oxygen compounds.