This paper presents an interactive motion adaptation scheme for close interactions between skeletal characters and mesh structures, such as moving through restricted environments, and manipulating objects. This is achieved through a new spatial relationship-based representation, which describes the kinematics of the body parts by the weighted sum of translation vectors relative to points selectively sampled over the surfaces of the mesh structures. In contrast to previous discrete representations that either only handle static spatial relationships, or require offline, costly optimization processes, our continuous framework smoothly adapts the motion of a character to large updates of the mesh structures and character morphologies on-the-fly, while preserving the original context of the scene. The experimental results show that our method can be used for a wide range of applications, including motion retargeting, interactive character control and deformation transfer for scenes that involve close interactions. Our framework is useful for artists who need to design animated scenes interactively, and modern computer games that allow users to design their own characters, objects and environments.