This version is available at https://strathprints.strath.ac.uk/42608/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. This art icle m ay be used for research, t eaching, and privat e st udy purposes. Any subst ant ial or syst em at ic reproduct ion, redist ribut ion, reselling, loan, sub-licensing, syst em at ic supply, or dist ribut ion in any form t o anyone is expressly forbidden.The publisher does not give any warrant y express or im plied or m ake any represent at ion t hat t he cont ent s will be com plet e or accurat e or up t o dat e. The accuracy of any inst ruct ions, form ulae, and drug doses should be independent ly verified wit h prim ary sources. The publisher shall not be liable for any loss, act ions, claim s, proceedings, dem and, or cost s or dam ages what soever or howsoever caused arising direct ly or indirect ly in connect ion wit h or arising out of t he use of t his m at erial. The authors have developed a method/computer tool to assist (student) engineering designers in generating concept designs. The method is based on the chaining of physical laws and complementary basic schemata (BS). The tool generates chains which serve as an aid in the development of concept designs. In this paper, the authors compare concept designs generated by a control group (which used functional structure and morphological matrix) with those from an experimental group that used computer-generated chains. The experimental group was found to have generated a greater number of different solutions than the control group; the generation of different solutions indicates a high level of variety and a better chance to find potentially innovative solutions. The established difference in the number of different solutions is statistically significant and the results indicate that the BS facilitate greater variety of concept designs.