Numerical studies have been performed for optimally extracting high-intensity, space-chargedlimited multi-charged ion beams from an all-permanent-magnet, "volume-type" ECR ion source, equipped with a three-electrode extraction system. These studies clearly demonstrate the importance of being able to adjust the extraction gap in order to ensure high quality, minimum divergence (highly transportable) ion beams. Optimum extraction conditions are reached whenever the plasma meniscus has an optimum curvature for a given current.density. Optimum perveance (optimum current) values are found to closely agree with those derived from elementary analytical theory for extraction of space-charge-dominated beams. Details of the electrode system design as well as angular divergence and RMS emittance versus extraction parameter data (e.g., perveance and extraction gap) are provided for ion beams of varying charge-state and mass, extracted under the influence of a mirror-geometry plasma confinement magnetic field.