Objective: A series of 5-substituted-4-amino-1, 2, 4-triazole-linked hydroxamic acid derivatives have been synthesized and explored in vitro to evaluate antibacterial and antifungal activities.
Methods: Different 5-phenyl group substituted-4-amino-1,2,4-triazole-3-thiol reacted with chlorine substituted hydroxamic acid to produce the desired compounds and characterized spectroscopically. Minimum inhibitory concentration (MIC), zone of inhibition (ZOI), growth kinetic studies, and scanning electron microscopy (SEM) were employed to elicit the antimicrobial efficacy of synthesized compounds against a wide range of bacterial and fungal strains.
Results: Compounds 6a, 6b, 6d, and 6k (MIC of 25 μg/ml) have been found to be more potent against Klebsiella pneumoniae, Bacillus cereus, Bacillus pumilus, Micrococcus luteus, and Pseudomonas aeruginosa, compounds 6a-6d, 6k, and 6l (MIC of 25–50 μg/ml) have shown potent antibacterial efficacy against Klebsiella pneumonia, P. aeruginosa, and Vibrio cholera compare to the standard drug amoxicillin (MIC of 60 μg/ml, 65 μg/ml, and 25 μg/ml, respectively). Screening for the antifungal activity revealed that the compounds were found to be most active against Candida albicans (6a, 6b, and 6l), Candida tropicalis (6b and 6d), and Aspergillus niger (6a, 6b, 6d, and 6j) with MIC of 15–25 μg/ml. Bacteriostatic and fungistatic effect of titled compounds was revealed from growth kinetics study.
Conclusion: Electron donating group at the 5-position of the 5-substituted-1,2,4-triazole-linked hydroxamic acid derivatives conferred the biological effectiveness of the synthesized compounds and also offer a therapeutically effective prototypical structure for further development of new chemical entities with superior antimicrobial activity.