Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.
An efficient and eco-friendly synthesis of 1,5-benzothiazepines has been developed by the reaction of various 2-propen-1-ones with 2-aminothiophenol using microwave irradiation in greener reaction medium, glycerol. The clean reaction conditions, shorter reaction time, high yields and non-toxic, biodegradable reaction medium manufactured from renewable sources are unique features of this method.
:
Heterocyclic compounds and its derivatives gained more attention due to their valuable biological and
pharmacological properties. Benzothiazole is a heterocyclic structure containing bicyclic ring system with large panel of
applications. The benzothiazole is present in many new products undergoing research with the hope that it possesses various
biological activities.
Epilepsy is a diverse group of diseases marked by neuronal excitability and hypersynchronous neuronal activity of motor,
sensory or autonomic events with or without loss of consciousness..
Presently many antiepileptic drugs like Lamotrigine, stiripentol tiagabine, pregabalin, felbamate and topiramate are
available and effective toward only 60-80% of patients along with undesirable side effects, such as hepatotoxicity,
gastrointestinal disturbance, drowsiness, gingival hyperplasia, and hirsutism. Thus many attempts are still going on to
develop antiepileptic drugs with safer profile.
This review is mainly focus on compilation of reported scientific literature data in the recent one-decade on anticonvulsant
activity of benzothiazole compounds.
The new series of 2-(substituted amino)-N-(6- substituted-1,3-benzothiazol-2yl) acetamide BTC(a-t) has been synthesized by appropriate synthetic route from substituted 2-amino benzothiazole. The synthesized compounds were screened experimentally for its antimicrobial property against gram positive, gram negative bacteria and fungi. Zone of inhibition and minimum inhibitory concentration of compounds was determined against selected bacterial and fungal strains. Compound BTC-j N-(6-methoxy-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide and compound BTC-r N-(6-nitro-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide found to have good antimicrobial potential. The compound BTC-j has shown good antibacterial activity against S. aureus at MIC of 12.5 µg/ml, B. subtilis at MIC of 6.25µg/ml, E. coli at MIC of 3.125µg/ml and P. aeruginosa at MIC of 6.25µg/ml. No statistical difference in antimicrobial activity of standard and test compounds was found indicating test compounds have comparable activity. Further docking study was carried out to check the probable interactions with the selected protein using V-life MDS 3.5 software. (DNA gyrase, PDB: 3G75). The dock score of compounds and antimicrobial activity found to be consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.