2006
DOI: 10.1016/j.ress.2005.08.007
|View full text |Cite
|
Sign up to set email alerts
|

Designing a Bayesian network for preventive maintenance from expert opinions in a rapid and reliable way

Abstract: In this study, a Bayesian Network (BN) is considered to represent a nuclear plant mechanical system degradation. It describes a causal representation of the phenomena involved in the degradation process. Inference from such a BN needs to specify a great number of marginal and conditional probabilities. As, in the present context, information is based essentially on expert knowledge, this task becomes very complex and rapidly impossible. We present a solution which consists of considering the BN as a log-linear… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
22
0
2

Year Published

2013
2013
2018
2018

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 49 publications
(26 citation statements)
references
References 7 publications
0
22
0
2
Order By: Relevance
“…• To model the system lifetime and to quantify the degradation of functionality or failure probability, • To detect important variables involved in the functionality degradation process and to design maintenance events to eliminate ageing effect of equipment, • To determine the effect of maintenance activities on the system behavior, • To propose diagnosis and help in decision making, • To propose data extraction and sensibility analysis (Celeux et al 2006).…”
Section: Preventive Maintenancementioning
confidence: 99%
“…• To model the system lifetime and to quantify the degradation of functionality or failure probability, • To detect important variables involved in the functionality degradation process and to design maintenance events to eliminate ageing effect of equipment, • To determine the effect of maintenance activities on the system behavior, • To propose diagnosis and help in decision making, • To propose data extraction and sensibility analysis (Celeux et al 2006).…”
Section: Preventive Maintenancementioning
confidence: 99%
“…Expert judgment is a widely used as data input in risk management, e.g. (Cooke and Goossens 2004;Boholm 2010;Celeux et al 2006;Cooke and Goossens 2004;Evans et al 1994;Otway and Winterfeldt 1992). Furthermore, numerical ranges were used if it was difficult for the experts to provide precise numbers, as suggested by (Hubbard 2010).…”
Section: Operationalization Of Model In Case Studies D E Fmentioning
confidence: 99%
“…Des exemples d'études de fiabilité sur des systèmes composés de nombreuses variables interdépendantes à partir de MGP statiques ont été présentés dans la littérature [3]. L'article de Weber décrit l'utilisation des MGPM afin de modé-liser des CdM dépendant de variables exogènes pour étudier la fiabilité d'un système dynamique à temps discret en tenant compte de son contexte [2].…”
Section: Mgdunclassified
“…Nous avons opté pour un angle de vue à la fois probabiliste et graphique, et les modèles graphiques probabilistes (MGP) ou réseaux bayésiens (RB) nous sont apparus comme une solution pertinente pour développer des modèles de maintenance de systèmes dynamiques complexes [1][2][3].…”
Section: Introductionunclassified