This paper proposes a reinforcement learning model for intelligent energy management in buildings, using a UCB1 based approach. Energy management in buildings has become a critical task in recent years, due to the incentives to the increase of energy efficiency and renewable energy sources penetration. Managing the energy consumption, generation and storage in this domain, becomes, however, an arduous task, due to the large uncertainty of the different resources, adjacent to the dynamic characteristics of this environment. In this scope, reinforcement learning is a promising solution to provide adaptiveness to the energy management methods, by learning with the on-going changes in the environment. The model proposed in this paper aims at supporting decisions on the best actions to take in each moment, regarding buildings energy management. A UCB1 based algorithm is applied, and the results are compared to those of an EXP3 approach and a simple reinforcement learning algorithm. Results show that the proposed approach is able to achieve a higher quality of results, by reaching a higher rate of successful actions identification, when compared to the other considered reference approaches.