Computer. An authoritative, easy-to-read magazine containing tutorial and in-depth articles on topics across the computer field, plus news, conferences, calendar, industry trends, and product reviews. Periodicals. The society publishes 12 magazines and 10 research transactions. Refer to membership application or request information as noted at left.
a b s t r a c tThe electricity market sector has suffered massive changes in the last few decades. The worldwide electricity market restructuring has been conducted to potentiate the increase in competitiveness and thus decrease electricity prices. However, the complexity in this sector has grown significantly as well, with the emergence of several new types of players, interacting in a constantly changing environment. Several electricity market simulators have been introduced in recent years with the purpose of supporting operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents a new, enhanced version of MASCEM (Multi-Agent System for Competitive Electricity Markets), an electricity market simulator with over ten years of existence, which had to be restructured in order to be able to face the highly demanding requirements that the decision support in this field requires. This restructuring optimizes the performance of MASCEM, both in results and execution time.
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multiagent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) -a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
The increase of distributed energy resources, mainly based on renewable sources, requires new solutions that are able to deal with this type of resources' particular characteristics (namely, the renewable energy sources intermittent nature). The smart grid concept is increasing its consensus as the most suitable solution to facilitate the small players' participation in electric power negotiations while improving energy efficiency. The opportunity for players' participation in multiple energy negotiation environments (smart grid negotiation in addition to the already implemented market types, such as day-ahead spot markets, balancing markets, intraday negotiations, bilateral contracts, forward and futures negotiations, and among other) requires players to take suitable decisions on whether to, and how to participate in each market type. This paper proposes a portfolio optimization methodology, which provides the best investment profile for a market player, considering different market opportunities. The amount of power that each supported player should negotiate in each available market type in order to maximize its profits, considers the prices that are expected to be achieved in each market, in different contexts. The price forecasts are performed using artificial neural networks, providing a specific database with the expected prices in the different market types, at each time. This database is then used as input by an evolutionary particle swarm optimization process, which originates the most advantage participation portfolio for the market player. The proposed approach is tested and validated with simulations performed in multiagent simulator of competitive electricity markets, using real electricity markets data from the Iberian operator-MIBEL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.