Computer. An authoritative, easy-to-read magazine containing tutorial and in-depth articles on topics across the computer field, plus news, conferences, calendar, industry trends, and product reviews. Periodicals. The society publishes 12 magazines and 10 research transactions. Refer to membership application or request information as noted at left.
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heat-ing systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources' management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
We report an efficient energy-time entangled photon-pair source based on four-wave mixing in a CMOS-compatible silicon photonics ring resonator. Thanks to suitable optimization, the source shows a large spectral brightness of 400 pairs of entangled photons /s/MHz for 500 μW pump power, compatible with standard telecom dense wavelength division multiplexers. We demonstrate high-purity energy-time entanglement, i.e., free of photonic noise, with near perfect raw visibilities (> 98%) between various channel pairs in the telecom C-band. Such a compact source stands as a path towards more complex quantum photonic circuits dedicated to quantum communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.