a b s t r a c tThe electricity market sector has suffered massive changes in the last few decades. The worldwide electricity market restructuring has been conducted to potentiate the increase in competitiveness and thus decrease electricity prices. However, the complexity in this sector has grown significantly as well, with the emergence of several new types of players, interacting in a constantly changing environment. Several electricity market simulators have been introduced in recent years with the purpose of supporting operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents a new, enhanced version of MASCEM (Multi-Agent System for Competitive Electricity Markets), an electricity market simulator with over ten years of existence, which had to be restructured in order to be able to face the highly demanding requirements that the decision support in this field requires. This restructuring optimizes the performance of MASCEM, both in results and execution time.
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multiagent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) -a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches. 4 1 4i.e. the values ( 3 4 , 1 4 ).
We present a major new release of the PRISM-games model checker, featuring multiple significant advances in its support for verification and strategy synthesis of stochastic games. Firstly, concurrent stochastic games bring more realistic modelling of agents interacting in a concurrent fashion. Secondly, equilibria-based properties provide a means to analyse games in which competing or collaborating players are driven by distinct objectives. Thirdly, a real-time extension of (turn-based) stochastic games facilitates verification and strategy synthesis for systems where timing is a crucial aspect. This paper describes the advances made in the tool's modelling language, property specification language and model checking engines in order to implement this new functionality. We also summarise the performance and scalability of the tool, and describe a selection of case studies, ranging from security protocols to robot coordination, which highlight the benefits of the new features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.