Microbial attachment to surfaces is ubiquitous in nature. Most species of bacteria attach and adhere to surfaces via special appendages such as pili and fimbriae, the roles of which have been extensively studied. Here we report an experiment on pilus-less mutants of Caulobacter crescentus weakly attached to a plastic surface and subjected to an electric field parallel to the surface. We find that some individual cells transiently but repeatedly adhere to the surface in a stick-slip fashion in the presence of an electric field. Even while transiently detached, these bacteria move significantly slower than the unattached ones in the same field of view undergoing electrophoretic motion. We refer this behavior of repeated and transient attachment as "quasi-attachment". The speed of the quasi-attached bacteria exhibits large variations, frequently dropping close to zero for short intervals of time. This study suggests applying electric field as a useful method to investigate bacteria-surface interaction, which is significant in broader contexts such as infection and environmental control.
SignificanceInteraction between bacteria and surfaces occur widely in nature, including those in industrial, environmental, and medical settings. It is therefore important to understand various mechanisms and factors that affect numerous forms of bacterium-surface interaction, particularly those resulting in adhesion or attachment, be they strong or weak, permanent or transient. This work takes a unique approach to identify a transient and reversible mode of bacterial attachment to a solid surface, by applying an electric field to exert a force for detachment. The force thus exerted proves to reach the amplitude required to detach bacteria of a pilus-less strain that weakly attach to a plastic surface. The method may be applied broadly to investigate bacteria-surface interaction.