This work aims the detection of the histopathologic alterations of in vitro human gastric mucosa using spectral informations from laser-induced fluorescence spectroscopy (LIFS) technique with excitation at 488 nm (argon laser). A total of 108 biopsies with endoscopic diagnosis of gastritis and gastric cancer were obtained at the antral gastric region, from 35 patients with dyspeptic digestive complaints. The biopsies were collected during the endoscopic examination. On each biopsy fragment the autofluorescence spectrum was collected in two random points, through a fiber-optic catheter coupled to the excitation laser. The fluorescence emission spectra collected by the fibers were directed to the spectrograph and detected by the CCD camera. The spectra were then separated in groups (N, normal; LI, light inflammation; MI, moderated inflammation; CA, adenocarcinoma), based on the histopathology. The ratio between the emission wavelengths 550 and 600 nm was used as a diagnostic parameter. Analysis of fluorescence spectra was able to identify the normal tissue from adenocarcinoma lesions with 100% of sensibility and specificity. The ratio intensities between inflammation (light and moderated), although presented significantly statistical differences when compared to the normal mucosa, do not furnish enough sensibility and specificity for use as an identification method due to high variations. LIFS, with excitation of 488 nm, could be used in the differentiation of normal tissue and neoplasic lesions, assisting a less invasive diagnosis.