2017
DOI: 10.4995/riai.2017.8833
|View full text |Cite
|
Sign up to set email alerts
|

Detección de Fibrilación Ventricular Mediante Tiempo-Frecuencia y Clasificador KNN sin Extracción de Parámetros

Abstract: ResumenEste trabajo propone la detección de FV y su discriminación de TV y otros ritmos cardiacos basándose en la representación tiempo-frecuencia del ECG y su conversión en imágen como entrada a un clasificador de vecinos más cercanos (KNN) sin necesidad de extracción de parámetros adicionales. Tres variantes de datos de entrada al clasificador son evaluados. Los resultados clasifican la señal en cuatro clases diferentes: 'Normal' para latidos con ritmo sinusal, 'FV' para fibrilación ventricular, 'TV' para ta… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 29 publications
(28 reference statements)
0
4
0
Order By: Relevance
“…In this first test, individual classifiers are used. The results are obtained using four different classification algorithms: L2RLR, ANNC, BAGG, and KNN [8,31]. After several trials, the parameters for the classifiers were the following:…”
Section: Results For Individual Classifiersmentioning
confidence: 99%
See 1 more Smart Citation
“…In this first test, individual classifiers are used. The results are obtained using four different classification algorithms: L2RLR, ANNC, BAGG, and KNN [8,31]. After several trials, the parameters for the classifiers were the following:…”
Section: Results For Individual Classifiersmentioning
confidence: 99%
“…Some algorithms propose the use of four classes [8,31]. However, we can combine different binary algorithms for two-class separation so that they can provide important complementary information about the representation of the data.…”
Section: Classification Algorithmsmentioning
confidence: 99%
“…To select candidate areas from EEG signals could be helpful a computerized analysis of the EEG [8,9]. As with other pathologies [10][11][12], machine learning has been applied in epilepsy at many works [13][14][15] to classify EEG signals as normal versus epileptic or seizure versus inter-ictal. However, the most challenging classification problem is focal (F) versus non-focal (NF).…”
Section: Introductionmentioning
confidence: 99%
“…The detection of the QRS complex of the ECG signal was assessed in [ 5 , 6 ]. From a medical point of view, essential information present in the ECG signal are included in the P wave, the QRS complex, and the T wave.…”
Section: Introductionmentioning
confidence: 99%