Layout design optimization has a significant impact in the design and use of many engineering products and systems, such as the subdivision of a ship, the layout of facilities in a plant or further still the assembly of parts of a mechanism. The search for an optimal layout configuration is a critical and complex task due to the increasing demands of designers working on varied projects. A layout optimization process is generally divided into different steps: the description, formulation and solving of the problem and the final decision. This process consists in writing an optimization problem that transform designer’s requirements into variables, constraints and objectives. Then, an optimization algorithm has to be used in order to search for optimal solutions that fit with product’s specifications. This paper focuses on the last step which consists, for the designer, in making a choice on the solutions generated by the optimization algorithm. This choice is made according to the global performances of the designs and also the personal judgment of the designer. This judgment is based on the expertise of the designer and the subjective requirements that could not be integrated on the formulation of the problem. This paper proposes a perceptive exploration method, based on an Interactive Genetic Algorithm (IGA), used to explore designs, taking into account the subjective evaluation of the designer. The objective of this method is to select an ideal solution that realizes the best trade-off between the quantitative and qualitative performance criteria. This interactive process is tested on an industrial layout application which deals with the search for an optimal layout of facilities in a shelter.