Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. In this study, we investigated the anti‐amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A‐I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid‐like aggregates formed by methionine‐oxidized (ox) apoA‐I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β‐structure in ox‐apoA‐I amyloid‐like aggregates formed in the presence of curcumin, compared to aggregates formed without curcumin. However, the kinetics of ox‐apoA‐I amyloid‐like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox‐apoA‐I amyloid‐like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA‐I and alters the structure of ox‐apoA‐I amyloid‐like aggregates yet does not diminish the propensity of ox‐apoA‐I to form aggregates.