Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, showed conformation-dependent optical properties and could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Aβ-assemblies during in vitro fibrillation of Aβ peptides. In brain tissue samples, Aβ deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8), indicating that p-FTAA detects all the immuno-positive aggregated proteinaceous species in Alzheimer disease, but with significantly shorter imaging time (100 fold) compared to immunofluorescence. In addition, a patchy islet-like staining of individual Aβ plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA, suggesting that pre-fibrillar species are likely an intrinsic component of Aβ plaques in human brain. The major hallmarks of Alzheimer's disease, namely Aβ aggregates versus NFTs could also be distinguished due to distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Aβ−tau interactions and pathogenesis both ex vivo and in vivo. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptThe formation of highly ordered aggregates of intra-or extracellular proteins underlies a wide range of neurodegenerative conditions including prion, Parkinson's, Huntington's and Alzheimer's (AD) diseases. Hence, molecular probes that specifically target protein aggregates and allow in vitro or in vivo imaging of these pathological hallmarks, are of great importance. Small hydrophobic probes that cross the blood-brain barrier (BBB) can be monitored in vivo with positron emission tomography (PET), single-photon emission computerized tomography (SPECT) or multiphoton microscopy (1-7). The latter is especially applicable in transgenic mouse models where mechanistic insights regarding the pathological events involved in the formation of protein deposits can be obtained. Additionally, molecular imaging probes may also help in early diagnosis of neurodegenerative diseases and in monitoring the effect of therapeutic interventions. However, a major drawback of these conventional probes is that only a subset of aggregates that roughly corresponds to histologically identifiable amyloid ...
Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300-500 kD) within 2 h that matured after 20 h into larger spherical clusters (30-50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300-500 kD) with an apparent dissociation constant of 1.6 muM, which was slightly better than for ThT (6.8 muM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482 nm wavelength when bound to amyloid fibrils.
Deposition of aggregated Aβ peptide in the brain is one of the major hallmarks of Alzheimer's disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aβ plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout.
The isotropic and anisotropic hyperfine coupling constants and g-values of the nitroxide spin label (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate (MTSSL) were determined from 9-GHz and 95-GHz electron paramagnetic resonance (EPR) measurements in various solvents with a large distribution in polarity and proticity. The parameters A iso , g iso , A zz , and g xx of MTSSL were found to be sensitive to changes in solvent properties, where A-values increased and g-values decreased due to increased solvent polarity or proticity. A linear correlation was found for the isotropic (g iso , A iso ) and anisotropic (g xx , A zz ) parameters, respectively. Furthermore, density functional theory (DFT) calculations of the same parameters were performed for a model spin label with the possibility to vary the dielectric constant ( ) of the medium and the number of hydrogen bonds formed with the nitroxide oxygen. From a qualitative analysis of experimental and calculated results, it was possible to specify the causes of the parameter shifts in more detail. In the "apolar region" ( < 25), the sensitivity of A iso and A zz to is large. However, in the "polar region" ( > 25), the sensitivity to is small, and the shifts in A iso and A zz are mainly determined by the proticity of the solvent. Methanol was found to form ∼1 and water ∼2 hydrogen bonds to the nitroxide on average. The DFT method determined the shifts in g iso and g xx due to hydrogen bonding more accurately compared with the restricted open-shell Hartree-Fock method. The anisotropic spin label-solvent data can be used in the interpretation of rigid-limit data from spin-labeled proteins to gain further insight in local environmental properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.