2017
DOI: 10.1108/aa-03-2017-040
|View full text |Cite
|
Sign up to set email alerts
|

Detection and estimation of mental fatigue in manual assembly process of complex products

Abstract: Purpose This paper aims to investigate an approach for mental fatigue detection and estimation of assembly operators in the manual assembly process of complex products, with the purpose of founding the basis for adaptive transfer and demonstration of assembly process information (API), and eventually making the manual assembly process smarter and more human-friendly. Design/methodology/approach The proposed approach detects and estimates the mental state of assembly operators by electroencephalography (EEG) … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
6
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(8 citation statements)
references
References 42 publications
1
6
0
1
Order By: Relevance
“…As expected, (mental) fatigue and drowsiness constituted a high fraction of these studies, in particular for different aspects of aircraft piloting (Guo, Pan, Zhao, Cao, & Zhang, 2018;Hankins & Wilson, 1998;Lin et al, 2014;Rohit et al, 2017;Wilson, 2002;X. L. Zhang et al, 2017;Zhou et al, 2018), manual assembly processes (Xiao, Duan, Zhang, & Li, 2018), or in the context of a logistics workplace (Wascher, Heppner, et al, 2014a;Wascher et al, 2016). These studies included user state examinations, the development of countermeasures to critical aspects of safety in the workplace (Zhou et al, 2018), or a brain-computer interface (BCI) based control of driving speed (Z. T. Zhang et al, 2016).…”
Section: State Of the Artmentioning
confidence: 65%
“…As expected, (mental) fatigue and drowsiness constituted a high fraction of these studies, in particular for different aspects of aircraft piloting (Guo, Pan, Zhao, Cao, & Zhang, 2018;Hankins & Wilson, 1998;Lin et al, 2014;Rohit et al, 2017;Wilson, 2002;X. L. Zhang et al, 2017;Zhou et al, 2018), manual assembly processes (Xiao, Duan, Zhang, & Li, 2018), or in the context of a logistics workplace (Wascher, Heppner, et al, 2014a;Wascher et al, 2016). These studies included user state examinations, the development of countermeasures to critical aspects of safety in the workplace (Zhou et al, 2018), or a brain-computer interface (BCI) based control of driving speed (Z. T. Zhang et al, 2016).…”
Section: State Of the Artmentioning
confidence: 65%
“…We used a wearable smart T-shirt to record the researchers’ ECG signals, and this device can easily record the signals without any problem. Previously, many researchers have used different wearable smart devices to record the physiological signals to detect the mental stress of the assembly-line operators, brain-injured patients, drivers, equipment operators, pilots, security guards, and traffic controllers [ 28 , 31 , 102 , 103 , 104 , 105 ]. They employed various techniques to find a more accurate detection system using wearable smart devices such as SYMTOP NT9200, NI USB-6008, ST-BTA, Storm 3G Ranger X, ADS1292R, Emotiv EPOC, and HD-BTA ( Table 5 ).…”
Section: Resultsmentioning
confidence: 99%
“…Laurent et al [ 30 ] studied that multimodal information improved the detection of mental stress using physiological signals such as EEG, ECG, and EOG. Xiao et al [ 31 ] suggested that using brain signals, Principal Component Analysis (PCA) and SVM classifiers easily detect mental stress in manufacturing industry workers.…”
Section: Introductionmentioning
confidence: 99%
“…Emotiv y Neurosky son quizás una de las empresas con más desarrollos, no solo para aplicaciones con videojuegos, sino en investigaciones médicas como la estimación del estado de la fatiga mental [76], déficits de la memoria de trabajo en niños con trastorno del espectro alcohólico fetal [49], regulación emocional [77], imaginación motora [25], en el movimiento de una órtesis para pacientes con accidente cerebrovascular [78], detectar somnolencia o el estado de atención en conductores [79], reconocimiento de afecto o emociones [29], evaluar procesos cognitivos en personas que juegan videojuegos [80], etc.…”
Section: Discussionunclassified