Northern blotting (NB), a gold standard for RNA detection, has lost its charm due to its hands-on nature, need for good quality RNA, and radioactivity. With the emergence of the field of microRNAs (miRNAs), the necessity for sensitive and quantitative NBs has again emerged. Here, we developed highly sensitive yet non-radiolabeled, fast, economical NB, and liquid hybridization (LH) assays without radioactivity or specialized reagents like locked nucleic acid (LNA)- or digoxigenin-labeled probes for mRNAs/small RNAs, especially miRNAs using biotinylated probes. An improvised means of hybridizing oligo probes along with efficient transfer, cross-linking, and signal enhancement techniques was employed. Important caveats of each assay were elaborated upon, especially issues related to probe biotinylation, use of exonuclease, and bioimagers not reported earlier. We demonstrate that, while the NBs were sensitive for mRNAs and small RNAs, our LH protocol could efficiently detect these and miRNAs using less than 10–100 times the total amount of RNA, a sensitivity comparable to radiolabeled probes. Compared to NBs, LH was a faster, more sensitive, and specific approach for mRNA/small RNA/miRNA detection. A comparison of present work with six seminal studies is presented along with detailed protocols for easy reproducibility. Overall, our study provides effective platforms to study large and small RNAs in a sensitive, efficient, and cost-effective manner.