Regulatory T (Treg) cells play a key role in the regulation of autoimmunity and transplantation. Human placenta-derived mesenchymal stem cell (hPMSC) transplantation has a potential to restore ovarian dysfunction associated with premature ovarian failure (POF), while the exact function of the Treg cells in the transplantation still needs to be further investigated. In this study, hPMSCs were intravenously injected into POF mice following zona pellucida glycoprotein 3 (pZP3) treatment. Ovarian function was measured by analyzing estrous cycle, folliculogenesis, and hormone secretion, also, with the detection of apoptotic granular cells (GCs) in ovarian tissues. To determine whether immune response is involved in the regulation of ovarian function change, the population of Treg cell populations and expression of associated cytokines, for example, transforming growth factor β (TGF-β) and interferon γ (IFN-γ) were measured. After hPMSCs transplantation, the injured ovarian function is significantly improved. Also, the pZP3-treatment-induced apoptotic GCs were significantly decreased as compared with the POF mice. The transplantation of hPMSCs significantly increased the population of Treg cells which was inhibited by pZP3 treatment. The decrease in TGF-β and increase in IFN-γ in serum caused by pZP3 treatment have been reversed following hPMSCs transplantation. These findings strongly suggest that the recovery of ovarian function in POF mice is mediated via the regulation of Treg cells and production of associated cytokines following hPMSCs transplantation.