2021
DOI: 10.1007/s11277-021-08271-z
|View full text |Cite
|
Sign up to set email alerts
|

Detection of DDOS Attack using Deep Learning Model in Cloud Storage Application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
36
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 56 publications
(37 citation statements)
references
References 40 publications
0
36
0
1
Order By: Relevance
“…In addition, they plan to use another video steganography technology based on the payload method (DECM: Frequency Division Embedded Component Method), which can use two open devices VirtualDub and Stegano to implant significantly more privileges than existing tools information. They show that proposed model can be performed in the Telegram SNS courier, and compared proposed model and DECM with the current image steganography-based botnets and methods in terms of the effectiveness and imperceptibility [17]. Zahid Akhtar et al [18] proposed a concise overview of malware, followed by a summary of different inspection challenges.…”
Section: Related Workmentioning
confidence: 99%
“…In addition, they plan to use another video steganography technology based on the payload method (DECM: Frequency Division Embedded Component Method), which can use two open devices VirtualDub and Stegano to implant significantly more privileges than existing tools information. They show that proposed model can be performed in the Telegram SNS courier, and compared proposed model and DECM with the current image steganography-based botnets and methods in terms of the effectiveness and imperceptibility [17]. Zahid Akhtar et al [18] proposed a concise overview of malware, followed by a summary of different inspection challenges.…”
Section: Related Workmentioning
confidence: 99%
“…In this paper, the authors tried to implement an IDS-based security mechanism to automatically notify the administrator about any harmful activity [26]. For that purpose, a lightweight attack recognition system with a deep learning method is suggest to arrange simple and attack details.…”
Section: Ddos Detection By Deep Learningmentioning
confidence: 99%
“…DDoS saldırısı ve normal trafik esnasındaki entropi değişimine dayanan düşük ek hesaplama yüküne sahip bir savunma mekanizması sunulan çalışmada [26], yüksek doğrulukla tespit yapıldığı ve saldırı etkilerinin hafifletildiği ortaya konmuştur. DDoS saldırılarına maruz kalmış veri ve sağlıklı verinin ayırt edilmesi için derin öğrenme teknikleri kullanılan çalışmada [27], sadece saldırıya maruz kalmış verilerin ayıklanmasıyla sağlıklı verilerin bulut depolama alanlarında saklanması amaçlanmıştır. Bulut ortamında sistem yüklerinin, farklı yük dengeleme yaklaşımlarıy la yönetiminin incelendiği çalışmada [28], yoğun yük altında dinamik yük dengelemenin sisteme gelen isteklerin engellenmesi kapsamında daha iyi performans gösterdiği ortaya konmuştur.…”
Section: Dağıtık Hizmet Dışı Bırakma (Distributed Denial Of Service)unclassified