“…Similarly, new food-analysis e-nose methods are being developed to detect changes in VOCs released from foods and beverages in storage to assess shelf-life [346,397,398] and quality [185,206,399–403], and for chemical analyses [404,405], classifications [227,232,346,406,407], and discriminations [162,218,228,408] of food types, varieties and brands. Electronic-nose applications to detect plant pests in preharvest and postharvest crops and tree species continue to expand to include new insect [54–61] and disease [111,112,339,409–413] pests, primarily microbial plant pathogens, beyond those originally reported by Wilson et al [2,106,107]. In the macroenvironments adjacent to industrial plants and indoor working spaces within associated food- and fiber-production facilities, e-noses increasingly are being utilized to monitor air quality to detect hazardous chemicals [68–70,76,77,80,414–419], explosives and flammable gases [29,64], pollutants [420–422] and other VOCs that threaten human health.…”