2014
DOI: 10.1007/978-3-319-10978-7_8
|View full text |Cite
|
Sign up to set email alerts
|

Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signals

Abstract: Emotion classification based on electroencephalogram (EEG) signals is a relatively new area of research in the development of brain computer interface (BCI) system with challenging issues like induction of the emotional states and the extraction of the features in order to obtain optimum classification of human emotions. The emotion classification system based on BCI can be useful in many areas like as entertainment, education, and health care. This chapter presents a new method for human emotion classificatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
21
0
3

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(24 citation statements)
references
References 130 publications
(119 reference statements)
0
21
0
3
Order By: Relevance
“…The dataset is composed by EEG signals from 5 right-handed males volunteers (21,30,30,33,33 years old) with normal vision implementing a Motor Imagery task. They have imagined the right and left hand movement according to a predefined timing.…”
Section: Eeg Signal Generation and Acquisitionmentioning
confidence: 99%
See 1 more Smart Citation
“…The dataset is composed by EEG signals from 5 right-handed males volunteers (21,30,30,33,33 years old) with normal vision implementing a Motor Imagery task. They have imagined the right and left hand movement according to a predefined timing.…”
Section: Eeg Signal Generation and Acquisitionmentioning
confidence: 99%
“…Thus the analysis of the EEG signal has been used to detect abnormal functions of the brain like disorders such as autism, dementia, schizophrenic, depression etc... [8,[19][20][21]. Besides medical applications, the information extracted in this type of analysis has been used for nonmedical purposes such as mental fatigue, emotion recognition or BCI.…”
Section: Introductionmentioning
confidence: 99%
“…clusters, and shape features were extracted for the DWT bands. For each set of features, most discriminating features and their optimal weights were found using real-valued and binary genetic algorithms (GA) utilizing a k-nearest-neighbor classifier.In [6] a new method for classification of human emotions based on multiwavelet transform of magnetic resonance imaging (MRI) images is proposed. The extracted features used as an input to multiclass least squares support vector machine (MC-LS-SVM) for classification of human emotions.…”
Section: Introductionmentioning
confidence: 99%
“…Algunos de estos métodos procesan imágenes para interpretar las expresiones faciales [16], [17], [22], [23] y otros para interpretar la voz [18]. Sin embargo, estos métodos no son aplicables en personas con parálisis cerebral debido a que, por su condición, afecta su capacidad de controlar expresiones faciales, sus cuerdas vocales, así como las redes de nervios y músculos que se extienden por todo su cuerpo [14]. Otro de los enfoques para el reconocimiento de emociones, es el análisis de señales fisiológicas.…”
unclassified
“…Otro de los enfoques para el reconocimiento de emociones, es el análisis de señales fisiológicas. En [14] se argumenta que ese tipo de análisis es un medio más natural de reconocimiento de emociones, puesto que, el estado emocional se refleja inherentemente en la actividad del sistema nervioso.…”
unclassified